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ABSTRACT
There is growing awareness that AI and machine learning systems
can in some cases learn to behave in unfair and discriminatory
ways with harmful consequences. However, despite an enormous
amount of research, techniques for ensuring AI fairness have yet
to see widespread deployment in real systems. One of the main
barriers is the conventional wisdom that fairness brings a cost
in predictive performance metrics such as accuracy which could
affect an organization’s bottom-line. In this paper we take a closer
look at this concern. Clearly fairness/performance trade-offs exist,
but are they inevitable? In contrast to the conventional wisdom,
we find that it is frequently possible, indeed straightforward, to
improve on a trained model’s fairness without sacrificing predictive
performance. We systematically study the behavior of fair learning
algorithms on a range of benchmark datasets, showing that it is
possible to improve fairness to some degree with no loss (or even
an improvement) in predictive performance via a sensible hyper-
parameter selection strategy. Our results reveal a pathway toward
increasing the deployment of fair AI methods, with potentially
substantial positive real-world impacts.

CCS CONCEPTS
• Applied computing→ Law, social and behavioral sciences;
• Computing methodologies → Machine learning; Artificial
intelligence.
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1 INTRODUCTION
Over the last few years, it has been well established that artificial
intelligence (AI) and machine learning (ML) systems, trained on
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real data without necessary precaution, often exhibit harmful be-
havior toward certain demographic groups [1, 2, 8, 23, 36]. This can
have serious impact on many facets of daily life in a variety of AI-
automated tasks including college admissions, resume selections or
hiring decisions, financial and housing approvals, criminal justice
bail or sentencing decisions, and the prioritization of healthcare
resource allocation [37].

With the rising obligation of fairness, the AI community has
devoted much effort to the development and enforcement of a broad
array of mathematical definitions of fairness in learning algorithms
[17, 19–21, 26, 29, 48]. The main paradigm for fair AI/ML models
is to posit a quantifiable notion of fairness across protected demo-
graphic groups, (e.g. by gender, race, age, etc.) or similar individuals
(e.g. persons with similar qualifications and abilities) [4]. The para-
digm then enforces these fairness notions by penalizing violations
[3, 19, 24] or imposing constraints [47] when optimizing standard
machine learning loss functions.

In principle, these techniques should then be able to simply be
deployed in the real systems. Unfortunately, the practical reality
is far more complicated. Fairness in AI is not a purely technical
issue, as it has numerous socio-technical facets crossing computer
science/AI, law and policy, the social sciences, and philosophy [6,
22, 41]. Stakeholders who are impacted by these systems are often
far-removed or under-represented in the AI research laboratories
in academia and industry that design them, yet their voices must
be heard [12].

Despite burgeoning research on fairness in AI, learning algo-
rithmswhich aim to ensure it have currently attained relatively little
adoption in deployed AI systems across industry, government, and
the public sector. One of the main barriers to the broader adoption
of AI fairness in real systems is the potential cost to performance
metrics such as accuracy. Since machine learning loss functions
and fairness definitions compete to influence a learning algorithm’s
behavior, there is frequently a trade-off between fairness and pre-
dictive performance [11, 33, 50]. A reduction in a deployed model’s
predictive performance can harm an organization’s profitability,
which the management may not be willing to tolerate [12]. Ac-
cording to Crawford et al. (2016), “Big Tech refuses to prioritize
solving these issues over their bottom line.” The expectation of a
performance sacrifice also prevents fair AI methods from being
considered the default state-of-the-art techniques to be used for
any prediction task.

The goal of this work, therefore, is to work toward addressing the
“cost of predictive performance” barrier toward deployment of fair
AI and ML technologies, in order to ultimately motivate practition-
ers to increase the adoption of these methods. To that end, we ask
a simple question: is it possible to obtain some degree of improve-
ment in fairness metrics for free, i.e. without sacrificing performance
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relative to a typical ML model which does not aim to ensure fair-
ness? As we shall see, it turns out that the answer is frequently
yes. The widely held presumption of a fairness/accuracy trade-off,
which is now essentially a “folk theorem” in fair AI research (cf.
[4]), neglects the real possibility of achieving a beneficial degree of
“fairness for free” in some cases. We identify two mechanisms that
can potentially lead to fairness for free: the regularization benefits
of fairness penalties, and gerrymandering the errors. We empiri-
cally study this “fairness for free” phenomenon, and we provide a
simple method to achieve it. Our approach is to simply conduct a
grid search on the development (“dev”) set over all model hyper-
parameters including the fair ML algorithm’s fairness/accuracy
trade-off hyper-parameter, in which we optimize for fairness under
a performance constraint. Our primary contributions include:

• We systematically study the phenomenon of “fairness for
free” using standard fair learning algorithms to resolve the
practical limitation of the cost in predictive performance.

• We provide a simple method to simultaneously improve both
accuracy and fairness via hyper-parameter tuning.

• Our extensive experimental results on four benchmark datasets
demonstrate the benefits of our approach to address one of
the major barriers toward deployability of fair AI/ML sys-
tems.

2 PRELIMINARIES
In this section, we formalize the general problem setup for fair
AI/ML methods, and discuss the algorithms we will use.

2.1 Problem Setup
Fair AI/ML methods typically begin by asserting a mathematical
definition which aims to encode a particular notion of fairness; see
[4] for an early overview. Much work has been devoted to develop-
ing such fairness definitions, including notably demographic parity
[17], equalized odds [21], individual fairness [17], counterfactual
fairness [29], and intersectional fairness [19, 26]. The paradigmatic
AI fairness approach is to formulate training via an objective func-
tion 𝑓 (X;𝜃 ) where a penalty term is added to an ML algorithm’s
loss function 𝐿(x𝑖 ;𝜃 ) which penalizes fairness violations [3]:

min
𝜃

𝑓 (X;𝜃 ) ≜ 1

𝑁

𝑁∑
𝑖=1

𝐿(x𝑖 ;𝜃 ) + 𝜆𝐹 (X;𝜃 ) , (1)

where 𝑁 is the number of data points, x𝑖 ∈ X is a data point in the
training set, and 𝐹 is a fairness penalty (typically, lower is better),
𝜃 is the model’s parameters, and 𝜆 is a hyper-parameter that trades
between the prediction loss and fairness. In some cases, another
approach is used where a constraint on fairness with a small slack
tolerance 𝛿 is imposed instead of a penalty term [47], which is,
roughly speaking, similar to the above up to the choice of 𝜆:

min
𝜃

1

𝑁

𝑁∑
𝑖=1

𝐿(x𝑖 ;𝜃 ) s.t. 𝐹 (X;𝜃 ) ≤ 𝛿 . (2)

There are some methods that do not incorporate fairness mea-
sures directly into the objective as a penalty or constraint but rather
achieve a fairness criterion implicitly. For example, learning repre-
sentations of the data that achieve fairness [43, 48] or mitigating

unfairness of the ML models by making the predicted output inde-
pendent from protected attributes such as gender, race, etc. with
adversarial training [45, 49]. Although no explicit fairness metric is
involved in the learning process, there typically still exists a trade-
off parameter 𝜆 in these models which balances between fairness
and accuracy.

2.2 Fair Learning Algorithms
In this study, we consider two standard fair ML methods, one of
which encourages fairness using a penalty term, and the other
approach learns fairness implicitly.

2.2.1 Differential Fair Model. The differential fair model (DFM)
[19] uses the 𝜖-DF differential fairness metric as a penalty term
to measure unfairness (lower is better), with regard to parity in
the class probabilities assigned to intersecting subgroups of the
protected attributes (e.g. Black women). We defer the precise defi-
nition of 𝜖-DF to Section 6. The learning objective of a deep neural
network (DNN)-based classifier𝑀 (x) with parameters 𝜃 becomes:

min
𝜃

𝑓 (X;𝜃 ) ≜ 1

𝑁

𝑁∑
𝑖=1

𝐿(x𝑖 ;𝜃 ) + 𝜆[max(0, 𝜖 (X;𝜃 ) − 𝜖𝑡 )] , (3)

where 𝜖 (X;𝜃 ) is the 𝜖-DF measures for the classifier and 𝜖𝑡 is
the desired fairness. If 𝜖𝑡 is 0, it penalizes 𝜖-DF for𝑀 (x). The DFM
is trained using stochastic gradient descent [9] on the objective via
backpropagation [30] and automatic differentiation [38]. Due to
data sparsity of intersectional groups in a minibatch [18], training
DFM using stochastic methods is challenging. To address this, a
stochastic approximation-based update for 𝜖 (X;𝜃 ) is maintained
by estimating noisy expected counts per intersecting group for each
minibatch [19].

2.2.2 Adversarial Debiasing Model. In the adversarial debiasing
model (ADM), an adversarial network penalizes the classifier𝑀 (x)
if protected attributes 𝑧 are predictable from the predicted output
of the𝑀 (x) [31, 45, 49]. In practice, two DNN classification models
are used, one with model parameters 𝜃 encoding 𝑀 (x) and an
adversary with parameters 𝜙 , respectively. The learning objective
becomes a min-max problem:

min
𝜃

max
𝜙

𝑓 (X;𝜃, 𝜙) ≜ 1

𝑁

𝑁∑
𝑖=1

𝐿(x𝑖 ;𝜃 ) − 𝜆𝐿(X;𝜃, 𝜙) , (4)

where, the adversary gets the classifier’s predictions Ŷ for X in-
stances and attempts to predict z. Both networks are trained simulta-
neously as follows: the adversary is trained first for an epoch while
keeping the classifier fixed, and then the classifier on a minibatch
is trained while keeping the adversary fixed [31].

3 FAIRNESS FOR FREE
The conventional wisdom, oft-repeated in AI fairness papers, is
that improvements in fairness generally come at a cost in predic-
tive performance [4]. The intuition behind this “folk theorem” is
clear from Equation 1, which shows the general formulation that is
applied by many AI fairness methods directly or implicitly. In this
general objective function, the loss function 𝐿(x;𝜃 ) competes with
the fairness term 𝐹 (X;𝜃 ) to determine the desired solution, with an
explicit trade-off between the two controlled via a hyper-parameter



Figure 1: Example of the “fairness for free” phenomenon.
Here, + and − are class labels, and colors (orange, blue) cor-
respond to different demographic groups. Solid and dashed
circles indicate the errors made by the solid and dashed hy-
perplanes, respectively.

𝜆. The higher 𝜆 is, the more the fairness penalty is able to shift
the optimal solution away from that determined by the predictive
loss which we would otherwise solely optimize. This is a serious
barrier to the adoption of these methods, because organizations
must be persuaded to sacrifice the effectiveness of their systems
for the altruistic goal of fair behavior [12].1

Although this “folk theorem” generally holds when a strong
degree of fairness is required, we will see in this paper that it is
often possible to improve fairness to at least some degree with little-
to-no loss in accuracy. In our experiments, we demonstrate cases
where fair ML models can even improve predictive performance
over the equivalent “typical” model (TM). Note that TM is a standard
ML model that aims only for accurate predictions, with no fairness
intervention.

We will consider two ways in which “fairness for free” can arise.
First, Equation 1 has the form of a standard empirical risk minimiza-
tion objective in which the fairness term is a regularization penalty
[3]. Since the fairness penalty acts as a regularizer, it has potential
to reduce overfitting, hence improving generalization performance
on unseen data while reducing bias to some extent.

Secondly, it is also potentially possible to improve fairness with-
out harming performance on the training data. Multiple different
classifiers can potentially obtain the same or a similar number of
errors on the training set while making errors on different training
instances, a phenomenon known as the Rashomon effect [10]. Some
of those equally accurate classifiers may be more fair than others
under a desired fairness metric 𝐹 (X;𝜃 ). We can improve fairness
with no loss in performance by selecting the most fair classifier out

1There are good non-altruistic reasons to adopt fair AI, such as avoiding legal liability
regarding anti-discrimination laws such as Title VII of the Civil Rights Act of 1964, or
to improve the organization’s reputation as an ethical actor. As of now, these reasons
have not been sufficient for widespread adoption [12].

of these equal-performing models. This can essentially be under-
stood as “gerrymandering” the errors between protected groups
at a fixed training-set error rate to optimize fairness which will
eventually improve fairness on the unseen data with no overall
cost in performance. Figure 1 shows an example where two clas-
sifiers have the same number of errors but different fairness. The
classifiers with the solid and dashed hyperplanes both make two
errors (indicated with solid and dashed circles, respectively). The
solid-line classifier makes both errors on orange group instances,
while the dashed-line classifier makes one error on an orange group
instance and one error on a blue group instance. While this exam-
ple may seem contrived, practical experience with training deep
neural networks, which generally converge to any number of local
optima or saddle points of a highly non-convex objective function
but obtain similar performance across runs, suggests that for these
models there are many different solutions with similar predictive
performance [10]. Of these similar quality solutions, we can and
should aim to pick the most fair option.

So, the “fairness for free” phenomenon can potentially be achieved
with fair methods that improve fairness with no loss in predictive
performance by 1) reducing overfitting, and/or 2) “gerrymander-
ing” the training errors between protected groups. We consider
two strategies to obtain “fairness for free” models by simply us-
ing standard fair ML methods. In both methods, we first obtain a
typical model (TM) via a grid search over TM’s hyper-parameters
(e.g. # neurons/layer, activation function, drop-out probability, etc.),
selecting the best TM based solely on a performance metric such
as accuracy, measured on the development set. Our goal is to find
a model which improves fairness over TM, while retaining or im-
proving its predictive performance.

3.1 Full Hyper-parameter Search (FHS)
In the Full Hyper-parameter Search (FHS) method, which we con-
sider to be our gold-standard approach, we select the best fair
models in terms of performance and fairness metrics on the devel-
opment set, via a grid search over all hyper-parameters, including
those for TM, and the trade-off hyper-parameter 𝜆. We select the
model with the best fairness metric, such that the performance
metric is at least as good as for TM. Note that a feasible model
satisfying the constraint always exists, since 𝜆 = 0 corresponds to
TM.

3.2 Stage-wise Hyper-parameter Search (SHS)
As a faster alternative to FHS, in the Stage-wise Hyper-parameter
Search (SHS) method the fair model is assigned the same hyper-
parameter values as the best TM. Then, a grid search is conducted
over only the fairness trade-off 𝜆, holding the other hyper-parameters
fixed. We select the model with the best fairness metric, such that
the performance metric is at least as good as for TM.

4 EXPERIMENTS
We conduct an extensive experimental analysis to study whether
fair learning algorithms can enforce fairness while retaining or
improving predictive performance. The implementation’s source



code of our study is provided on GitHub.2 All experiments were
performed on the following benchmark datasets:

• COMPAS: The COMPAS dataset regarding a system which
is used to predict criminal recidivism. It has been criticized
as potentially biased [1]. Following [18], we used race (4
values: black, white, hispanic, and others) and gender (binary:
men and women) as protected attributes. The target variable
indicates “actual recidivism,” which is binary, within a 2-year
period for 7.22K individuals.

• Adult: The Adult 1994 U.S. census income dataset from the
UCI ML-repository [15] consists of 14 attributes such as
work, relationships, and demographics for individuals, pre-
split into a training set of 32.56K instances and a test set of
16.28K instances. The downstream task is to predict whether
an individual earns more than $50K/year. Following [18],
we selected race (4 values: black, white, asian-pac-islander,
and others), gender (binary:men and women), and nationality
(binary: U.S. and others) as the protected attributes.

• Bank: The bank marketing data, extracted from direct mar-
keting campaigns of a Portuguese bank [34], contains a total
of 41.18K subjects, and each with 20 attributes. In addition
to age (binary: age < 35 and age ≥ 35 ) by following [46], we
used job (binary: privileged and unprivileged) as protected
attributes. The downstream task is to predict whether the
client has subscribed or not to a term deposit.

• HHP: A dataset derived from the Heritage Health Prize
(HHP) milestone 1 challenge,3 a considerably larger dataset
which contains information for 171.07K patients over a 3 year
period. The task is to predict whether the Charlson Index, an
estimation of mortality, is greater than zero. Following [43],
we also used age (9 values: 55 ≤ age < 65, 65 ≤ age < 75,
etc.) and gender (binary: men and women) as the protected
attributes.

4.1 Experimental Settings
We investigate and compare the FHS and SHS strategies using two
standard fair models, DFM and ADM, with the TM baseline (no
fairness intervention). All the models were trained via adaptive
gradient descent optimization (Adam) [28] using PyTorch [39] for a
total of 10 epochs. Table 1 summarizes the set of hyper-parameter4
values to perform the grid search on the development (dev) set.
Note that the DNN-based hyper-parameters (all hyper-parameters
except 𝜆) are common for all models. Further note that, we used
same network configurations for classifier and adversarial networks
in ADM, following [31]. Since DFM requires a relatively smaller
𝜆 in practice, we used different ranges for 𝜆 values in DFM and
ADM, respectively, as shown in Table 1. It is also intelligible from
the table that we trained 96 TM models with every grid for DNN-
based hyper-parameters to pick the best option. For fair models
(both DFM and ADM), we trained 10 and 960 models following SHS
(requires tuning for 𝜆 only) and FHS (requires tuning for DNN-based
hyper-parameters plus 𝜆) strategies, respectively.

2https://github.com/rashid-islam/F3_via_grid.
3https://www.kaggle.com/c/hhp.
4We refer to [30] for details on the deep learning networks and effect of hyper-
parameters on them.

#neurons / hidden layer {[64, 64, 64], [32, 32, 32], [64, 32, 16]}
minibatch size {128, 256}
learning rate {0.001, 0.005}
dropout probability {0, 0.5}
activation function {ReLU, LeakyReLU}
𝑙2 regularization {0, 1𝑒-5}
𝜆 for DFM 10 evenly spaced values in [1𝑒-5, 0.1]
𝜆 for ADM 10 evenly spaced values in [1, 10]

Table 1: Set of hyper-parameter values for the grid search.

We split the COMPAS and Bank datasets into 60% train, 20% dev,
and 20% test sets. For the Adult data, we used the pre-specified test
set and held-out 30% from the training data as the dev set. Finally,
we held-out 10% from our larger data HHP as the test set, using the
remainder for training, while 10% from the training set was further
held-out as the dev set.

To evaluate the predictive performance of the models, we com-
puted accuracy, F1 score, and ROC AUC [25] for the held-out data.
For fairness measures, we computed 𝜖-DF and 𝛾-SF with all pro-
tected attributes, while 𝛿-DP and 𝑝%-Rule [47] were measured
for each protected attribute, e.g. gender, race, age, etc., separately
(see section 6 for details). Since, by definition, 𝛿-DP and 𝑝%-Rule
assume binary protected attributes between privileged and unpriv-
ileged groups, we converted non-binary protected attributes into
binary for these two metrics. For example, race is coded as white
and non-white for COMPAS and Adult, while age are coded as
age ≤ 65 and age > 65 for HHP data. Furthermore, we select the
most marginalized subgroup (mmsg) as the protected group (black
women non-USA for Adult, black women for COMPAS, age < 35
with unprivileged job for Bank, and women with age ≥ 85 for HHP)
for 𝛿-DP and 𝑝%-Rule measurements, compared to its complement.

4.2 Analysis on Grid Search
Since AI fairness interventions divert a system’s learning objective
from accuracy only to both accuracy and fairness, the conventional
wisdom is it may hurt accuracy. In this experiment, we study the
impact of fairness interventions on the accuracy with respect to the
hyper-parameters for all benchmark datasets following our SHS
and FHS approaches.

Figure 2 shows accuracy versus various fairness metrics for all
models on the dev set of COMPAS. The best option for the TM
baseline, selected in terms of highest accuracy on the dev set via
grid search over hyper-parameters, is indicated by a black aster-
isk. All fair models obtained during the grid search are shown,
including DFM (blue circles) and ADM (purple diamonds). The “fair-
ness for free” region (orange area) is marked by an area that has
equal or higher accuracy and better corresponding fairness than the
best TM. Depending on the fairness metric, lower (left) or higher
(right) may be better.With the FHS approach, a large number
of fair models, both DFM and ADM, satisfied the criteria of
“fairness for free” in terms of all of the fairness metrics.

The SHS approach did not perform as well in this experiment.
We found only a single fair ADM model which satisfied our criteria
of “fairness for free” for all fairness metrics, except 𝛿-DP (mmsg)
and 𝑝%-Rule (mmsg).

https://github.com/rashid-islam/F3_via_grid
https://www.kaggle.com/c/hhp


(b) SHS Approach

TM DFM ADM Fairness for Free Region

(a) FHS Approach

Figure 2: Analysis on the grid search for the dev set of COMPAS dataset. Black asterisk is the best typical model (TM) in terms of accuracy,
while the blue circle and purple diamond represent differential fair models (DFM) and adversarial debiasing models (ADM), respectively,
trained on hyper-parameter grids with (a) full hyper-parameter search (FHS) and (b) stage-wise hyper-parameter search (SHS). A large number
of fair models satisfy the “fairness for free” (orange area) criteria using the FHS approach with respect to all fairness metrics, while SHS only
satisfied the criteria in a few cases. Lower is better for 𝜖-DF, 𝛾-SF, and 𝛿-DP; higher is better for 𝑝%-Rule.

Similar conclusions can be found on the Adult and Bank datasets
(Figures 3 and 4). For these datasets, FHS again achieved a consid-
erable number of “fairness for free” cases, although fewer than for
COMPAS, while the orange area was empty for SHS (i.e. fairness
for free was not achieved by the SHS method in this case).

As shown in Figure 2 and 3, there are relatively more FHS fair
models in the “fairness for free” region in case of the COMPAS
dataset compared to Adult. As a likely explanation, we observe a
higher difference in accuracy between train and dev sets for the
TM baseline on this dataset, which created more scope for fair
models to improve both accuracy and fairness via regularization.
For example, to improve fairness, fair models may alter the TM

baseline’s predicted false negative individuals of an unprivileged
groups to true positives which provide improvement in accuracy
as well. To further study the generalization behavior of the models,
we provide a case study for COMPAS dataset in a later section.

4.3 Performance of “Fairness for Free”
Methods

We next evaluated the accuracy-based performance and fairness
metrics for the best fair models, with respect to “fairness for free”
phenomenon, on unseen test data, and compared them with the TM
baseline. In FHS approach, we picked the fairest model on the dev
set, under the corresponding fairness metric, that provides equal or



(b) SHS Approach

TM DFM ADM Fairness for Free Region

(a) FHS Approach

Figure 3: Analysis on the grid search for the dev set of Adult dataset. Black asterisk is the best typical model (TM) in terms of accuracy, while
blue circles and purple diamonds represent differential fair models (DFM) and adversarial debiasing models (ADM), respectively, trained on
hyper-parameter grids with (a) full hyper-parameter search (FHS) and (b) stage-wise hyper-parameter search (SHS). A considerable number
of fair models satisfy the “fairness for free” (orange area) criterion using the FHS approach with respect to all fairness metrics, while no fair
model satisfies the criteria using the SHS approach. Lower is better for 𝜖-DF, 𝛾-SF, and 𝛿-DP; higher is better for 𝑝%-Rule.

higher accuracy compared to TM. Since very few SHS fair models
reached the “fairness for free” region on the dev set (see Figure 2,
3, and 4), we relaxed the accuracy constraint. For SHS, we instead
selected the best DFM and ADM models in terms of their accuracy
on the dev set that also ensures improved fairness over TM, under
the corresponding fairness metric. As DFM and ADM are optimized
to ensure 𝜖-DF and 𝛿-DP (or 𝑝%-Rule), respectively, in its learning
process, we treated 𝜖-DF and 𝛿-DP (mmsg) as their corresponding
fairness metrics, respectively.

In Table 2, we show detailed results for the selected TM baseline,
fair models using SHS (DFM-S and ADM-S), and fair models using
FHS (DFM-F and ADM-F). In all datasets, DFM-F and ADM-F were
the best models overall in terms of accuracy, while both of them
improved all the fairness metrics comparing to TM. Furthermore,
ADM-F performed with the highest accuracy, outperformed all
other models on all datasets, and ensured better fairness than TM
as well. Since the accuracy constraint was relaxed in the model

selection criteria on the dev set for the SHS approach, DFM-S and
ADM-S improved fairness metrics to a higher degree for most of
the cases, with little-to-no loss in accuracy compared to TM.

For the COMPAS dataset, ADM-F was the fairest model in terms
of 𝛿-DP (race), 𝑝%-Rule (gender), and 𝑝%-Rule (race) in addition
to performing with highest accuracy, while ADM-S was the fairest
model in term of all other fairness measures with similar perfor-
mance in accuracy to TM. Though DFM-S outperformed the others
with respect to F1 score, it increased unfairness compared to TM in
terms of 𝜖-DF, 𝛾-SF, and 𝛿-DP (gender). Worsening some fairness
metrics with DFM-Swas unexpected since the DFM-S showed better
fairness on the dev set. This counter-intuitive result is presumably
due to the difference in the distribution of protected groups for the
train and dev sets. In the case of the Adult dataset, ADM-F achieves
the highest improvement in accuracy and 𝜖-DF, while ADM-S was
the fairest model in terms of all the other fairness metrics with a
little loss in accuracy. DFM-F showed superior performance on the



(b) SHS Approach

TM DFM ADM Fairness for Free Region

(a) FHS Approach

Figure 4: Analysis on the grid search for the dev set of Bank dataset. Black asterisk is the best typical model (TM) in terms of accuracy, while
blue circle and purple diamond represent differential fair models (DFM) and adversarial debiasing models (ADM), respectively, trained on
hyper-parameter grids with (a) full hyper-parameter search (FHS) and (b) stage-wise hyper-parameter search (SHS). A considerable number
of fair models satisfy “fairness for free” (orange area) criteria using FHS approach with respect to all fairness metrics, while no fair model
satisfy the criteria using SHS approach. Lower is better for 𝜖-DF, 𝛾-SF, and 𝛿-DP; higher is better for 𝑝%-Rule.

Bank dataset in terms of all predictive performance metrics and
most of the fairness metrics. Finally, on the HHP dataset, we get
the highest improvement in accuracy and F1 score using ADM-F,
with a considerable amount of improvement in all fairness metrics,
while ADM-S shows huge improvement in most of the fairness
metrics with a loss in predictive performance.

4.4 Case Study on Overfitting for COMPAS
The COMPAS system predicts recidivism score to determine sen-
tencing and supervision for incarcerated individuals, and which has
been criticized as potentially racially biased [1]. Compared to the
other datasets in our experiments, we found that ML models often

exhibit more overfitting on COMPAS. This presents an opportunity
for fair models to improve both accuracy and fairness using our
approach.

To investigate this further, in Figure 5 we compared the gener-
alization of the TM with fair models DFM and ADM on the train
and test sets of COMPAS in terms of accuracy and 𝑝%-Rule (race)
while varying model complexity. In this experiment, we varied the
number of hidden layers of all models, where each hidden layer
contained a fixed number of neurons, e.g. 64. To demonstrate the
impact of fairness interventions on the overfitting, we removed
hyper-parameters that compensate for overfitting such as dropout
probability and 𝑙2 regularization by setting them to 0. At every



COMPAS Dataset

Models Accuracy ↑ F1 Score ↑ AUC ↑ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(gender)

𝛿-DP ↓
(race)

𝛿-DP ↓
(mmsg)

𝑝%-Rule ↑
(gender)

𝑝%-Rule ↑
(race)

𝑝%-Rule ↑
(mmsg)

TM 0.688 0.635 0.729 1.793 0.071 0.234 0.145 0.177 46.772 67.372 56.812
DFM-S 0.691 0.644 0.727 1.824 0.072 0.244 0.140 0.176 46.578 69.376 58.369
ADM-S 0.688 0.616 0.721 1.580 0.043 0.138 0.045 0.123 63.612 87.863 66.170
DFM-F 0.688 0.621 0.729 1.659 0.054 0.203 0.102 0.150 49.395 74.177 59.960
ADM-F 0.694 0.633 0.726 1.632 0.044 0.143 0.026 0.156 64.387 93.295 59.928

Adult Dataset

Models Accuracy ↑ F1 Score ↑ AUC ↑ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(gender)

𝛿-DP ↓
(race)

𝛿-DP ↓
(nationality)

𝛿-DP ↓
(mmsg)

𝑝%-Rule ↑
(gender)

𝑝%-Rule ↑
(race)

𝑝%-Rule ↑
(nationality)

𝑝%-Rule ↑
(mmsg)

TM 0.854 0.665 0.907 2.679 0.046 0.184 0.101 0.060 0.150 29.194 52.506 70.739 24.615
DFM-S 0.854 0.655 0.907 2.501 0.042 0.167 0.098 0.061 0.138 30.950 51.243 68.266 26.282
ADM-S 0.852 0.647 0.899 1.692 0.030 0.120 0.071 0.030 0.115 46.315 63.516 83.848 37.300
DFM-F 0.854 0.662 0.907 2.564 0.042 0.168 0.091 0.065 0.128 33.538 56.526 68.033 34.882
ADM-F 0.856 0.661 0.906 1.850 0.036 0.149 0.076 0.041 0.121 37.571 61.837 78.908 36.279

Bank Dataset

Models Accuracy ↑ F1 Score ↑ AUC ↑ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(age)

𝛿-DP ↓
(job)

𝛿-DP ↓
(mmsg)

𝑝%-Rule ↑
(age)

𝑝%-Rule ↑
(job)

𝑝%-Rule ↑
(mmsg)

TM 0.897 0.288 0.754 0.802 0.004 0.010 0.017 0.004 73.864 57.819 88.739
DFM-S 0.897 0.273 0.760 0.436 0.002 0.003 0.011 0.005 92.245 68.199 82.542
ADM-S 0.897 0.278 0.757 0.594 0.003 0.005 0.014 0.006 86.221 61.647 79.007
DFM-F 0.897 0.312 0.761 0.431 0.002 0.008 0.009 0.001 80.289 78.730 97.727
ADM-F 0.897 0.284 0.760 0.563 0.003 0.008 0.011 0.000 78.463 69.908 98.468

HHP Dataset

Models Accuracy ↑ F1 Score ↑ AUC ↑ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(gender)

𝛿-DP ↓
(age)

𝛿-DP ↓
(mmsg)

𝑝%-Rule ↑
(gender)

𝑝%-Rule ↑
(age)

𝑝%-Rule ↑
(mmsg)

TM 0.860 0.752 0.916 2.746 0.026 0.023 0.397 0.280 91.382 21.654 40.997
DFM-S 0.862 0.755 0.917 2.720 0.025 0.020 0.398 0.285 92.419 21.546 40.433
ADM-S 0.855 0.741 0.902 2.512 0.021 0.024 0.308 0.216 91.096 31.273 48.841
DFM-F 0.863 0.756 0.915 2.640 0.024 0.015 0.382 0.272 94.107 23.079 41.848
ADM-F 0.864 0.760 0.915 2.684 0.024 0.023 0.389 0.269 91.337 22.965 42.708

Table 2: Performance for best fair models in terms of “fairness for free” phenomenon on the test set of all datasets. Fair models using full
hyper-parameter search (FHS) performed with highest accuracy, and also improved all fairness metrics to some degree. Fair models using
stage-wise hyper-parameter search (SHS) provided higher improvement in fairness metrics for most of the cases with little-to-no loss in
accuracy. TM: typical model; DFM-S and DFM-F: differential fair model using SHS and FHS, respectively; ADM-S and ADM-F: adversarial
debiasing model using SHS and FHS, respectively. Higher is better for measures with ↑, while lower is better for measures with ↓.

configuration of hidden layers, the best options for the models were
selected again via grid search on the dev set over the rest of the
hyper-parameters using our FHS approach. Figure 5 shows that the
accuracy of TM is higher on the train set comparing to fair models
when network size increases, while both fair models outperform
TM on the test set with any network size. Furthermore, DFM and
ADM decrease the corresponding gap between accuracy on train
and test sets due to the regularization behavior of the fairness in-
terventions. As also shown, DFM and ADM ensure higher 𝑝%-Rule
(race) on both train and test sets compared to TM. Since fairness
interventions affect the learning objective in the training phase,
both DFM and ADM exhibit fairness improvement on the train set

as well. Overall, we conclude from this experiment that fair mod-
els reduce overfitting which helps to improve both accuracy
and fairness.

5 DISCUSSION
In this work, we investigated how some degree of “fairness for free,”
where fairness improvements do not harm (and perhaps improve)
prediction, can be achieved by standard fair learning algorithms.
We provided two strategies, SHS and FHS, for conducting a grid
search over hyper-parameters to find the “fairness for free” models.
The methods are applicable to any fair models that use a trade-off



Figure 5: Comparison of the generalization for the typical model (TM), differential fair model (DFM), and adversarial debiasingmodel (ADM)
in terms of accuracy and 𝑝%-Rule (race) on the train and test set of COMPAS dataset, while varying the network size. Higher is better for
accuracy and 𝑝%-Rule (race). The results indicate that DFM and ADM reduced overfitting compared to TM.

parameter in the learning process to balance between the predictive
performance and fairness. As shown in Table 2, fair models using
FHS outperformed TM in terms of accuracy, and improved
all fairnessmeasures considered including group fairness, 𝛿-DP
and 𝑝%-Rule, and intersectional fairness metrics, e.g. 𝜖-DF and𝛾-SF.
Our experiments on multiple benchmark datasets challenge the
traditional perception of the accuracy and fairness trade-off.

The main limitations of our FHS approach is that it is compu-
tationally expensive since the fair models must be trained many
times to pick the the best one. Our other approach SHS is relatively
less computationally expensive and substantially improves
most of the fairness metrics with little-to-no loss in predic-
tive performance. However, we had a few failure cases with SHS
approach, e.g. DFM using SHS slightly increased unfairness in terms
of 𝜖-DF, 𝛾-SF, 𝛿-DP (gender), 𝑝%-Rule (gender) on COMPAS, and
𝛿-DP (nationality), 𝑝%-Rule (nationality) on Adult (see Table 2).
Furthermore, our approaches are only applicable to models for
which fair learning algorithms have already been developed.

In future, we plan to address these limitations, e.g. speeding up
our hyper-parameter tuning approach using Bayesian optimiza-
tion [42] to carefully and automatically tune the hyper-parameters.
We also aim to develop a learning algorithm that directly solves
a constrained optimization problem to obtain “fairness for free.”
Furthermore, we will conduct user studies on our developed meth-
ods to investigate how the individuals from multiple disciplines
perceive and interact with our developed methods. The eventual
goal of this research is the successful application and deployment
of our methods, while preserving public trust in AI systems.

6 RELATEDWORK
In our approach, we optimized fairness under an accuracy con-
straint. This reverses a common approach in which predictive per-
formance is optimized under a fairness constraint, exemplified by
the work of [47]. For example, Perrone et al. 2020 proposes to use
Bayesian optimization to select the hyper-parameters of any black-
box ML model to optimize accuracy within a fairness constraint.



The existence of the fairness/accuracy trade-off has been identified
and characterized in several existing works [11, 33, 50]. Ustun et al.
2019 aim to select ML models specific to each demographic group,
e.g. a group-level model vs an overall “pooled model” of all groups,
such that the models perform as accurately as possible for that
group, without harming that group. In [19], the fairness/accuracy
trade-off hyper-parameter is selected for fair models based on the
validation set to minimize unfairness, such that accuracy is allowed
to be degraded by at most 5% from the typical model.

The recent work of [16] questions the legitimacy of the fair-
ness / accuracy trade-off. They argue that disparities in predicted
outcomes may arise from historical and systemic biases, and that
predictive performance on such biased data is less desirable than
performance on an idealized debiased data distribution. They then
devise an optimization method to obtain such a distribution. There
are several other studies [7, 32] that challenge the fairness/accuracy
trade-off by decomposing the bias in the training data into two
parts (e.g. recoverable and non-recoverable), and demonstrate that
enforcing fairness criteria improve performance of the Bayes opti-
mal model for recoverable data part. Our approach differs in that
we intervene on the existing fair learning algorithms rather than
on the data distribution, and that we aim to prevent performance
degredation on the original data rather than on any modified data.
This work was motivated by our recent findings regarding the pre-
vention of overfitting in survival analysis with fair survival models
for equitable allocation of medical resources [27, 35].

6.1 Fairness Metrics
In this section we provide definitions for the fairness metrics used
in our experiments. We selected standard fairness metrics for pro-
tecting groups, e.g.men, women, black, white, as well as those which
protect intersectional groups, e.g. black women and white men. We
assume a finite dataset of 𝑁 individuals in which each individual
is defined as a triple of attributes x, corresponding ground-truth
class 𝑦, and protected attributes 𝑧 which might be included in x.
Let𝑀 (x) be an algorithmic mechanism (e.g. classifier) which takes
an instance x and assigns them an outcome 𝑦, e.g. whether or not
the individual was awarded a loan.

6.1.1 Demographic Parity. The demographic parity (DP) [13, 17,
48] criterion is satisfied when the predictions 𝑦 are independent of
the protected attribute 𝑧, where 𝑧 is assumed to be a binary variable.
Since it is often impossible to achieve complete independence, a
practical metric, a demographic parity distance 𝛿 [13], is defined.
Specifically:

A mechanism𝑀 (x) satisfies 𝛿-DP with respect to 𝑧 ∈ {0, 1} if

|𝑃 (𝑀 (x) = 1|𝑧 = 1) − 𝑃 (𝑀 (x) = 1|𝑧 = 0) | ≤ 𝛿 , (5)

where 𝑧 = 1 and 𝑧 = 0 indicates privileged and unprivileged groups,
respectively. Smaller 𝛿 is better, e.g. 𝛿 = 0 indicates absolute fairness.

Alternatively, by considering the ratio between groups’ outcome
probabilities instead of their absolute difference, we obtain the 𝑝%-
Rule [47], which generalizes the 80% rule of the U.S. employment
law [5], that measures disparate impact toward a protected group.
A mechanism𝑀 (x) satisfies the 𝑝%-Rule if

min( 𝑃 (𝑀 (x) = 1|𝑧 = 1)
𝑃 (𝑀 (x) = 1|𝑧 = 0) ,

𝑃 (𝑀 (x) = 1|𝑧 = 0)
𝑃 (𝑀 (x) = 1|𝑧 = 1) ) ≥

𝑝

100
, (6)

where larger 𝑝 is better, e.g. 𝑝 = 100% represents perfect fairness,
otherwise 𝑝 < 100%.

6.1.2 Subgroup Fairness. The subgroup fairness (SF) metric [26] is
a multi-attribute definition with respect to all intersectional sub-
groups (e.g. black women) and top-level groups (e.g. men). Let G
be a collection of protected group indicators 𝑔 : 𝐴 → {0, 1}, where
𝑔(s) = 1 designates that an individual with protected attributes s is
in group 𝑔. Then 𝑀 (x) satisfies 𝛾-SF with respect to G if for every
𝑔 ∈ G, and 𝑦 ∈ {0, 1},

|𝑃 (𝑀 (x) = 1) − 𝑃 (𝑀 (x) = 1|𝑔(s) = 1) | × 𝑃 (𝑔(s) = 1) ≤ 𝛾 , (7)

where 𝛾 ∈ [0, 1], and smaller is better. Since the term 𝑃 (𝑔(s) = 1)
weights the penalty by the size of group 𝑔 as a proportion of the
population, 𝛾-SF does not guarantee to protect the small minority
groups [19].

6.1.3 Differential Fairness. The differential fairness (DF) metric
[19] is a definition specifically motivated by intersectionality [14],
which aims to ensure equitable treatment by an algorithm for all
intersecting subgroups of a set of protected categories with addi-
tional beneficial properties from a societal perspective regarding
the law, privacy, and economics.

Let 𝑠1, . . . , 𝑠𝑝 be discrete-valued protected attributes, 𝑧 = 𝑠1 × 𝑠2 ×
. . . × 𝑠𝑝 . A mechanism𝑀 (x) satisfies 𝜖-DF with respect to 𝑧 if for all
x, and 𝑦 ∈ Range(𝑀),

𝑒−𝜖 ≤ 𝑃 (𝑀 (x) = 𝑦 |s𝑖 )
𝑃 (𝑀 (x) = 𝑦 |s𝑗

≤ 𝑒𝜖 , (8)

for all (s𝑖 , s𝑗 ) ∈ 𝑧×𝑧 where 𝑃 (s𝑖 ) > 0, 𝑃 (s𝑗 ) > 0. Smaller 𝜖 is better,
and 𝜖 = 0 for perfect fairness, otherwise 𝜖 > 0.

7 CONCLUSION
We investigated one of the major practical barriers to the wide
deployment of fair AI/ML systems across industry, government, and
the public sector: the cost in predictive performance when ensuring
fairness. We showed experimentally that it is frequently possible to
improve fairness to some degree while avoiding any reduction in
predictive performance. This can be achieved with any standard fair
learning algorithm by using a simple but sensible approach to hyper-
parameter tuning. Our extensive experimental results on multiple
benchmark datasets demonstrate the practicality of the proposed
techniques.We hope that our results will encourage further research
in addressing the human-facing barriers to deployment of fair AI
methods, leading to increased real-world societal benefit from these
technologies.
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